Before the invention of a usable machine for sewing or dress design, everything was sewn by hand. Most early attempts tried to replicate this hand sewing method and were generally a failure. Some looked to embroidery, where the needle was used to produce decorative, not joining stitches. This needle was altered to create a fine steel hook – called an aguja in Spain. This was called a crochet in France and could be used to create a form of chain stitch. This was possible because when the needle was pushed partly through fabric and withdrawn, it left a loop of thread. The following stitch would pass through this first loop whilst creating a loop of its own for the next stitch, this resembled a chain – hence the name.
The first known attempt at a mechanical device for sewing was by the German born Charles Fredrick Wiesenthal, who was working in England. He was awarded British Patent No. 701 in 1755 for a double pointed needle with an eye at one end. This needle was designed to be passed through the cloth by a pair of mechanical fingers and grasped on the other side by a second pair. This method of recreating the hand sewing method suffered from the problem of the needle going right through the fabric, meaning the full length of the thread had to do so as well. The mechanical limitations meant that the thread had to be kept short, needing frequent stops to renew the supply.
In 1790 British Patent No. 1764 was awarded to Thomas Saint, a cabinetmaker of London. Due to several other patents dealing with leather and products to treat leather, the patent was filed under "Glues & Varnishes" and was not discovered until 1873 by Mr. Newton Wilson. Wilson built a replica to the patent's specifications and it had to be heavily modified before the machine would stitch – suggesting that Saint never actually made a machine of his own. Saint's design had the overhead arm for the needle and a form of tensioning system, which was to become a common feature of later machines.
There were various attempts and patents awarded for chain stitch machines of varying types from 1795-1830, none of which were used to any degree of success – many of which didn't work correctly at all. A French tailor Barthelemy Thimonnier made the next major breakthrough. He did not try to replicate the human hand stitch, looking instead for a way of finding a stitch, which could be made quickly and easily by machine. His machine worked by using a horizontal arm mounted on a vertical reciprocating bar, the needle-bar projected from the end of the horizontal arm. The cloth was supported on a hollow, horizontal fixed arm, with a hole on the topside, which the needle projected through at the lowest part of its stroke. Inside the arm was a hook, which partly rotated at each stroke in order to wrap the thread (fed from the bobbin onto the hook) around the needle at each stroke. The needle then carried the thread back through the cloth with the upward motion of its stroke. This formed the chain stitch, which held the cloth together. The machine was powered by means of a foot pedal. The easiest way to describe this is to picture the machine working upside-down from how sewing machines are generally thought of today – the stitch was formed on the top of the cloth, not the bottom as with most other chain stitch machine made since. Thimonnier was awarded a French patent in 1830 and 80 of these machines were installed in a factory in Paris to stitch Soldiers clothing. Other tailors concerned for their livelihood invaded the factory and smashed the machines.
Chain stitch has one major drawback – it is very weak, the stitch can easily be pulled apart. A stitch more suited to machine production was needed, it was found in the lock stitch. A lock stitch is created by two separate threads interlocking through the two layers of fabric, resulting in a stitch, which looks the same from both sides of the fabric. Although the credit for the lock stitch machine is generally given to Elias Howe, Walter Hunt first developed it over ten years before in 1834. His machine used an eye-pointed needle (with the eye and the point on the same end) carrying the upper thread, and a shuttle carrying the lower thread. The curved needle moved through the fabric horizontally, leaving the loop as it withdrew. The shuttle passed through the loop, interlocking the thread. The feed let the machine down – requiring the machine to be stopped frequently to set up again. Hunt grew bored with his machine and sold it without bothering to patent it.
Elias Howe patented his machine in 1846; using a similar method to Hunt's, except the fabric was held vertically. The major improvement he made was to put a groove in the needle running away from the point, starting from the eye. After a lengthy stint in England trying to attract interest for his machine he returned to America to find various people infringing his patent. He eventually won his case in 1854 and was awarded the right to claim royalties from the manufacturers using ideas covered in his patent. Isaac Merritt Singer has become synonymous with the sewing machine. Trained as an engineer, he saw a rotary sewing machine being repaired in a Boston shop. He thought it to be clumsy and promptly set out to design a better one. His machine used a flying shuttle instead of a rotary one; the needle was mounted vertically and included a presser foot to hold the cloth in place. It had a fixed arm to hold the needle and included a basic tensioning system. This machine combined elements of Thimonnier’s, Hunts and Howe’s machines. He was granted an American Patent in 1851 and it was suggested he patent the foot pedal (or Treadle) used to power some of his machines, however it had been in use for too long for a patent to be issued. When Howe learned of Singer’s machine he took him to court. Howe won and Singer was forced to pay a lump sum for all machines already produced. Singer then took out a license under Howe’s patent and paid him $15 per machine. Singer then entered a joint partnership with a lawyer named Edward Clark, and they formed the first hire purchase scheme to allow people to afford their machines.
Meanwhile Mr. Allen Wilson had developed a reciprocating shuttle, which was an improvement over Singer’s and Howe’s. However, John Bradshaw had patented a similar device and was threatening to sue. Wilson decided to change track and try a new method. He went into partnership with Nathaniel Wheeler to produce a machine with a rotary hook instead of a shuttle. This was far quieter and smoother than the other methods and the Wheeler and Wilson Company produced more machines in 1850s and 1860s than any other manufacturer. Wilson also invented the four-motion feed mechanism; this is still seen on every machine today. This had a forward, down, back, and up motion, which drew the cloth through in an even and smooth motion.
Through the 1850s more and more companies were being formed and were trying to sue each other. Charles Miller patented the first machine to stitch buttonholes (US10609). In 1856 the Sewing Machine Combination was formed, consisting of Singer, Howe, Wheeler and Wilson, and Grover and Baker. These four companies pooled their patents, meaning that all the other manufacturers had to obtain a license and pay $15 per machine. This lasted until 1877 when the last patent expired.
James Edward Allen Gibbs (1829-1902), a farmer from Raphine in Rockbridge County, Virginia who patented the first chain-stitch single-thread sewing machine on June 2, 1857. In partnership with James Wilcox, Gibbs became a principal in Wilcox & Gibbs Sewing Machine Company. Wilcox & Gibbs commercial sewing machines are still made and used in the 21st century.
Sewing machines continued being made to roughly the same design, with more lavish decoration appearing until well into the 1900s when the first electric machines started to appear. At first these were standard machines with a motor strapped on the side. As more homes gained power, these became more popular and the motor was gradually introduced into the casing.
Modern machines are computer controlled and use stepper motors or sequential cams to achieve very complex patterns. Most of these are now made in Asia and the market is becoming more specialized, as fewer families own a sewing machine.
This artical is a part of the Wikipedia program and the wonderful free service they offer.
The Sewing Machine and Me
As I look back the sewing machine has been a big part of my life. Starting at about the age of 3 or 4 I wasgiven a sewing machine to play with as a toy. I would tear them all apart and reassemble them again to the point of a wonderful operating machine. I have repaired them as a young man working through high school and then working for a Singer company in Montacello ID. for commission. My father always said sewing machines were something that I grew up with and would be apart of my life. Looking back I can see he has always been right.
I have a collection of sewing machines and I have began to work on that collection. I will buy great machines and sell the ones that are good. Along the way I will accumulate several great sewing machines of the same model that I will sell at a premium. The Great machine in my opinion is the very best sewing machine that you can but that meets the standards you have set for your collections and I have set some very high standards for my collection.
With that in mind if you are in the market for a great sewing machine and I have one in my possession I will be willing to part with it at a fair price to you and myself. I will be dealing in Singer featherweight 221 and 222 for the most part and some toy machines that strike my fancy.